Temporal coherence sensitivity in auditory cortex.
نویسندگان
چکیده
Natural sounds often contain energy over a broad spectral range and consequently overlap in frequency when they occur simultaneously; however, such sounds under normal circumstances can be distinguished perceptually (e.g., the cocktail party effect). Sound components arising from different sources have distinct (i.e., incoherent) modulations, and incoherence appears to be one important cue used by the auditory system to segregate sounds into separately perceived acoustic objects. Here we show that, in the primary auditory cortex of awake marmoset monkeys, many neurons responsive to amplitude- or frequency-modulated tones at a particular carrier frequency [the characteristic frequency (CF)] also demonstrate sensitivity to the relative modulation phase between two otherwise identically modulated tones: one at CF and one at a different carrier frequency. Changes in relative modulation phase reflect alterations in temporal coherence between the two tones, and the most common neuronal response was found to be a maximum of suppression for the coherent condition. Coherence sensitivity was generally found in a narrow frequency range in the inhibitory portions of the frequency response areas (FRA), indicating that only some off-CF neuronal inputs into these cortical neurons interact with on-CF inputs on the same time scales. Over the population of neurons studied, carrier frequencies showing coherence sensitivity were found to coincide with the carrier frequencies of inhibition, implying that inhibitory inputs create the effect. The lack of strong coherence-induced facilitation also supports this interpretation. Coherence sensitivity was found to be greatest for modulation frequencies of 16-128 Hz, which is higher than the phase-locking capability of most cortical neurons, implying that subcortical neurons could play a role in the phenomenon. Collectively, these results reveal that auditory cortical neurons receive some off-CF inputs temporally matched and some temporally unmatched to the on-CF input(s) and respond in a fashion that could be utilized by the auditory system to segregate natural sounds containing similar spectral components (such as vocalizations from multiple conspecifics) based on stimulus coherence.
منابع مشابه
Temporal coherence structure rapidly shapes neuronal interactions
Perception of segregated sources is essential in navigating cluttered acoustic environments. A basic mechanism to implement this process is the temporal coherence principle. It postulates that a signal is perceived as emitted from a single source only when all of its features are temporally modulated coherently, causing them to bind perceptually. Here we report on neural correlates of this proc...
متن کاملPhoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملInteraural temporal and coherence cues jointly contribute to successful sound movement perception and activation of parietal cortex
The perception of movement in the auditory modality requires dynamic changes in the input that reaches the two ears (e.g. sequential changes of interaural time differences; dynamic ITDs). However, it is still unclear as to what extent these temporal cues interact with other interaural cues to determine successful movement perception, and which brain regions are involved in sound movement proces...
متن کاملVisual Advantage in Deaf Adults Linked to Retinal Changes
The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either i...
متن کاملHierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech.
Hierarchical organization of human auditory cortex has been inferred from functional imaging observations that core regions respond to simple stimuli (tones) whereas downstream regions are selectively responsive to more complex stimuli (band-pass noise, speech). It is assumed that core regions code low-level features, which are combined at higher levels in the auditory system to yield more abst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 5 شماره
صفحات -
تاریخ انتشار 2002